Ontology Matching Using an Artificial Neural Network to Learn Weights

نویسندگان

  • Jingshan Huang
  • Jiangbo Dang
  • José M. Vidal
  • Michael N. Huhns
چکیده

Ontologies are a formal, declarative knowledge representation model. They form a semantic foundation for many domains, such as Web services, Ecommerce, and the Semantic Web, where applications can mutually understand and share information with each other. However, because ontologies reflect their designers’ conceptual views of part of the world, heterogeneity is an inherent characteristic for ontologies. During (semi)automated matching among ontologies, different semantic aspects, i.e., concept names, concept properties, and concept relationships, contribute in different degrees to the matching result. Therefore, a vector of weights are needed to be assigned to these aspects. It is not trivial to determine what those weights should be, and current research work depends a lot on human heuristics. In this paper, we take an artificial neural network approach to learning and adjusting the above weights, and thereby support a new ontology matching algorithm, with the purpose to avoid some of the disadvantages in both rule-based and learning-based ontology matching approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile &#10properties of ...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

Diagnosis of hyperlipidemia in patients based on an artificial neural network with pso algorithm

One of the most common and most dangerous diseases of blood fats are such as heart disease, diabetes and stroke, heart and brain. It can control the timely diagnosis, treatment and then prevention of complications is become very effective even without using medicine. Heart disease and diabetes file if patients has useful information that can be used to estimate blood fat timely diagnosis. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006